Integral #1
Prove that $\displaystyle\int_{0}^{1} \frac{(1-x^a)(1-x^b)(1-x^c)}{(1-x)(-logx)} \mathrm{d}x\tag*{}$
Equal to
$\displaystyle log \left[\frac{\Gamma (b+c+1)\Gamma(c+a+1)\Gamma(a+b+1)}{\Gamma(a+1)\Gamma(b+1)\Gamma(c+1)\Gamma(a+b+c+1)}\right]$
Misal $\displaystyle F(c) = \int_{0}^{1} \frac{(1-x^a)(1-x^b)(1-x^c)}{(1-x)(-logx)} \mathrm{d}x\tag*{}$
Turunkan $\displaystyle F(c)$ terhadap $\displaystyle c$ , didapat
$\displaystyle F'(c) = \int_{0}^{1} \frac{(1-x^a)(1-x^b)x^c}{(1-x)} \mathrm{d}x\tag*{}$
Senilai dengan
$\displaystyle F'(c) = \int_{0}^{1} \frac{(1-x^a-x^b+x^{a+b})x^c}{(1-x)} \mathrm{d}x\tag*{}$
$\displaystyle F'(c) = \int_{0}^{1} \frac{(x^c-x^{a+c}-x^{b+c}+x^{a+b+c}}{(1-x)} \mathrm{d}x$
$\displaystyle F'(c) = -\int_{0}^{1}\frac{1-x^c}{1-x} \mathrm{d}x + \int_{0}^{1} \frac{1-x^{a+c}}{1-x} \mathrm{d}x$ $\displaystyle + \int_{0}^{1}\frac{1-x^{b+c}}{1-x}\mathrm{d}x + \int_{0}^{1} \frac{1-x^{a+b+c}}{1-x} \mathrm{d}x $
Kita tahu bahwa
$\displaystyle \psi(s+1)= -\gamma + \int_{0}^{1} \frac{1-x^s}{1-x} \mathrm{d}x\tag*{}$
Sehingga bentuk diatas dapat disederhanakan menjadi
$\displaystyle F'(c) = -\psi(c+1)+\psi(a+c+1)$$\displaystyle +\psi(b+c+1)-\psi(a+b+c+1)\tag*{}$
Integral kan terhadap $\displaystyle c$ didapat :
$\displaystyle F(c) = -log[\Gamma(c+1)] + log[\Gamma(b+c+1)]$$ -log[\Gamma(a+b+c+1)] + e$
Dapat di sederhanakan menjadi
$\displaystyle log\left[\frac{\Gamma(a+c+1)\Gamma(b+c+1)}{\Gamma(c+1)\Gamma(a+b+c+1)}\right] +e \tag*{}$
Misal c = 0 , maka
$\displaystyle 0 = \frac{\Gamma(a+1)\Gamma(b+1)}{\Gamma(a+b+1)} + e\tag*{}$
Dengan mudah didapat nilai dari e , yaitu
$\displaystyle e = -log\left[\frac{\Gamma(a+1)\Gamma(b+1)}{\Gamma(a+b+1)}\right] \tag*{}$
Dengan begitu, kita punya
$\displaystyle F(c) = log\left[\frac{\Gamma(a+c+1)\Gamma(b+c+1)}{\Gamma(c+1)\Gamma(a+b+c+1)}\right]$
$\displaystyle -log\left[\frac{\Gamma(a+1)\Gamma(b+1)}{\Gamma(a+b+1)}\right]$
Dengan begitu di dapat hasil dari
$\displaystyle\int_{0}^{1} \frac{(1-x^a)(1-x^b)(1-x^c)}{(1-x)(-logx)} \mathrm{d}x\tag*{}$ adalah
$\displaystyle log \left[\frac{\Gamma (b+c+1)\Gamma(c+a+1)\Gamma(a+b+1)}{\Gamma(a+1)\Gamma(b+1)\Gamma(c+1)\Gamma(a+b+c+1)}\right]$
$\blacksquare$
Reference:advanced integration technique By Zaid Alyafeai
Belum ada tanggapan untuk "Integral #1"
Post a Comment