- Tentukan koefisien $\displaystyle x^{18}$ dari $\displaystyle\mathrm(1+x^{3}+x^{5}+x^{7})^{100}\tag*{}$
Solusi :
Selintas memang terlihat sulit untuk menyelesaikan soal ini .. namun untuk menyelesaikan soal ini, kita bisa menggunakan Multinomial expansion theorem
$\displaystyle(a+b+c+d)^{100}\tag*{}$
=$\displaystyle\sum_{p+q+r+s=100}^{}$ $\displaystyle\binom{100}{pqrs}a^{p}b^{q}c^{r}d^{s}$ $\ldots{(i)}$
Dimana :
$\displaystyle\binom{100}{pqrs}=\frac{100!}{p!q!r!s!}\tag*{}$$\ldots{(ii)}$
dengan, masing masing variabel disesuaikan dengan yang ada di soal, di dapat :
$\displaystyle {a=1,b=x^{3},c=x^{5},d=x^{7}}\tag*{}$
Sehingga
$\displaystyle a^{p}b^{q}c^{r}d^{s}= x^{3q+5r+7s}\tag*{}$
kesamaan ini didapat jika dan hanya jika ketiga variabel bernilai :
$\displaystyle\begin{cases}q=6,r=0,s=0\\q=1,r=3,s=0\\q=2,r=1,s=1\end{cases}\tag*{}$
Kemudian didapat :
$\displaystyle\binom{100}{94,6,0,0}$+ $\displaystyle\binom{100}{96,1,3,0}$ +$\displaystyle\binom{100}{96,2,1,1}$
berdasarkan $pers{(ii)}$ didapat koefisien $x^{18}$ pada ekspansi$\displaystyle(1+x^{3}+x^{5}+x^{7})^{100}$ adalah
$\displaystyle\frac{100!}{94!6!0!0!}+\frac{100!}{96!1!3!0!}+\frac{100!}{96!2!1!1!}$
)10=∑p+q+r+s=10(10p q r s)apbqcrd
Selintas memang terlihat sulit untuk menyelesaikan soal ini .. namun untuk menyelesaikan soal ini, kita bisa menggunakan Multinomial expansion theorem
$\displaystyle(a+b+c+d)^{100}\tag*{}$
=$\displaystyle\sum_{p+q+r+s=100}^{}$ $\displaystyle\binom{100}{pqrs}a^{p}b^{q}c^{r}d^{s}$ $\ldots{(i)}$
Dimana :
$\displaystyle\binom{100}{pqrs}=\frac{100!}{p!q!r!s!}\tag*{}$$\ldots{(ii)}$
dengan, masing masing variabel disesuaikan dengan yang ada di soal, di dapat :
$\displaystyle {a=1,b=x^{3},c=x^{5},d=x^{7}}\tag*{}$
Sehingga
$\displaystyle a^{p}b^{q}c^{r}d^{s}= x^{3q+5r+7s}\tag*{}$
kesamaan ini didapat jika dan hanya jika ketiga variabel bernilai :
$\displaystyle\begin{cases}q=6,r=0,s=0\\q=1,r=3,s=0\\q=2,r=1,s=1\end{cases}\tag*{}$
Kemudian didapat :
$\displaystyle\binom{100}{94,6,0,0}$+ $\displaystyle\binom{100}{96,1,3,0}$ +$\displaystyle\binom{100}{96,2,1,1}$
berdasarkan $pers{(ii)}$ didapat koefisien $x^{18}$ pada ekspansi$\displaystyle(1+x^{3}+x^{5}+x^{7})^{100}$ adalah
$\displaystyle\frac{100!}{94!6!0!0!}+\frac{100!}{96!1!3!0!}+\frac{100!}{96!2!1!1!}$
)10=∑p+q+r+s=10(10p q r s)apbqcrd
- Tentukan koefisien dari $x^{21}$ dari penjabaran
- $\displaystyle(1+x^{5}+x^{7}+x^{9})^{1000}\tag*{}$
Solusi:
- Dalam ekspansi dari $\displaystyle(1+x+x^{2}+...+x^{10})^{3}\tag*{}$ berapakah koefisien dari
- A) $x^{5}$
- B) $x^{8}$
Solusi :
Untuk menyelesaikan tipe soal seperti ini kita bisa lakukan pendekatan
Kita tahu bahwa :
$\displaystyle(1+x+\ldots+x^{n}) = \frac{1-x^{n}}{1-x}\tag*{}$
$\displaystyle f(x)=\frac{1}{(1-x)^{l}} (1-x^{n})^{l}\tag*{}$
Dimana $\displaystyle f(x) = (1+x+\ldots+x^{n})^{l}$
$\displaystyle(1-x)^{-l} =\sum_{k\ge 0}^{} \binom{l+k-1}{k} x^{k} \tag*{}$
$\displaystyle(1-x^{n})^{l} =\sum_{k\ge 0}^{} \binom{l}{k}(-1)^{k}x^{kn}\tag*{}$
$\displaystyle\binom{-n}{k} = \frac{-n(-n-1) \ldots (-n-k+1)}{k!}\tag*{}$
$\displaystyle = (-1)^{k}\frac{n(k-1) \ldots (n+1)^{n}}{k!}\tag*{}$
$\displaystyle =(-1)^{k} \binom{n+k-1}{k}\tag*{}$
Sehingga :
A) $\displaystyle (-1)^{5} \binom{3+5-1}{5}\tag*{}$
$\displaystyle = (-1)\frac{7!}{5!(7-5)!}\tag*{}$
$\displaystyle = -21\tag*{}$
B) $\displaystyle (-1)^{8} \binom{3+8-1}{8}\tag*{}$
$\displaystyle = (1)\frac{10!}{8!(10-8)!}\tag*{}$
$\displaystyle = 45\tag*{}$
Dimana $\displaystyle f(x) = (1+x+\ldots+x^{n})^{l}$
$\displaystyle(1-x)^{-l} =\sum_{k\ge 0}^{} \binom{l+k-1}{k} x^{k} \tag*{}$
$\displaystyle(1-x^{n})^{l} =\sum_{k\ge 0}^{} \binom{l}{k}(-1)^{k}x^{kn}\tag*{}$
$\displaystyle\binom{-n}{k} = \frac{-n(-n-1) \ldots (-n-k+1)}{k!}\tag*{}$
$\displaystyle = (-1)^{k}\frac{n(k-1) \ldots (n+1)^{n}}{k!}\tag*{}$
$\displaystyle =(-1)^{k} \binom{n+k-1}{k}\tag*{}$
Sehingga :
A) $\displaystyle (-1)^{5} \binom{3+5-1}{5}\tag*{}$
$\displaystyle = (-1)\frac{7!}{5!(7-5)!}\tag*{}$
$\displaystyle = -21\tag*{}$
B) $\displaystyle (-1)^{8} \binom{3+8-1}{8}\tag*{}$
$\displaystyle = (1)\frac{10!}{8!(10-8)!}\tag*{}$
$\displaystyle = 45\tag*{}$
- Find the coefficient of $x^{n}$ and $x^{n+r}$, $(1≤n≤r)$ in the expansion of
$\displaystyle(1+x)^{2n}+x(1+x)^{2n-1}+x^{2}(1+x)^{2n-2}$ $\displaystyle+ \ldots+x(1+x)^{2n}\tag*{}$
Solusi :
Misal $\displaystyle[x^{n}]$ menyatakan koefisien dari $\displaystyle x^{n}$
Maka ekspansi di atas dapat dinyatakan sebagai
$\displaystyle [x^{n}] \sum_{k=0}^{n} x^{k}(1+x)^{2n-k}\tag*{}$
$\displaystyle=[x^{n}](1+x)^{n}\sum_{k=0}^{n}(1+x)^{n-k}\tag*{}$
$\displaystyle= [x^{n}](1+x)^{n} \frac{(1+x)^{n+1}-x^{n+1}}{(1+x)-x}\tag*{}$
$\displaystyle=[x^{n}]((1+x)^{2n+1}-(1+x)^{n}x^{n+1})\tag*{}$
$\displaystyle\binom{2n+1}{n}\tag*{}$
Harrah's Casino New Orleans - Mapyro
ReplyDeleteHarrah's 양주 출장마사지 Casino New Orleans Hotel and 통영 출장마사지 Casino 과천 출장안마 features 392 guest rooms and suites. It features more than 강원도 출장마사지 2,000 slot machines and more than 영주 출장샵 2,300 table